Tetrahedron Letters No.3,105-109, 1961. Pergamon Press Ltd. Printed in the United States of America.

POSITION OF THE AROMATIC METHOXYL IN AMARYLLIDACEAE ALKALOIDS

RELATED TO POWELLANE

H. A. Lloyd, E. A. Kielar, R. J. Highet, S. Uyeo, H. M. Fales and W. C. Wildman

Laboratory of Chemistry of Natural Products, National Heart Institute Bethesda, Maryland

(Received 3 February 1961)

Amaryllidaceae alkaloids related to powellane $(I, R_1, R_2 = H)$ possess a methoxyl group whose position at either C7 or C₁₀ on the aromatic nucleus

has been a matter for conjecture. On the basis of the difference in ultraviolet extinction coefficient between derivatives with and without substituents at the C_1 position, Warnhoff and Wildman² assigned the methoxyl to the 10-position. As they noted, such a formulation readily fits the biogenetic scheme (<u>cf.</u> II \longrightarrow III, route A) proposed by Barton and Cohen.³ However, the

105

¹ These include powelline, nerbowdine, undulatine, crinamidine and buphanamine; <u>cf.</u> W. C. Wildman, <u>The Alkaloids</u> Vol. VI, p. 289. R. H. F. Manske, ed. Academic Press, Inc., New York, 1960.

² E. C. Warnhoff and W. C. Wildman, <u>J. Am. Chem. Soc</u>. <u>82</u>, 1472 (1960).

³ D. H. R. Barton and T. Cohen, <u>Festschrift Arthur Stoll</u> ed. by E. Jucker, Birkhauser, Basel, 1957, p. 117.

recent observation that dihydrobuphanamine (I, $R_1 = H$, $R_2 = 0H$) and epidihydrobuphanamine (I, $R_1 = 0H$, $R_2 = H$) exhibit hydroxyl stretching frequencies (3599 cm.⁻¹ ($0H \rightarrow T$) and 3616 cm.⁻¹ (free 0H) respectively) nearly identical with their <u>Ar</u>-demethoxy analogues (3602 cm ⁻¹ ($0H \rightarrow T$) and 3616 cm.⁻¹ (free 0H) respectively), is not in agreement with this assignment. Molecular models indicate that either configuration of the C₁ hydroxyl should show evidence of hydrogen bonding if the methoxyl is in the 10-position. This evidence supports assignment of the methoxyl to the 7-position.

Comparison of the nuclear magnetic resonance spectra of exectinine (IV, R = H)¹ and dihydroexectinine (IV, R = H, no double bond at $C_1 - C_2$) allows the clear differentiation of the absorption from the 7- and 10-protons, for only the latter is appreciably affected by hydrogenation.

	Aromatic C7	Protons C ₁₀	Olefini Cl	ic Protons C ₂	Benzylic Protons C ₆
Oxocrinine	2.66	2.25	1.49	3.0 9; J =10	4.80, 5.30; J =17
Dihydrooxocrinine	2.68	2.43			4.80, 5.30; 3 =17
Oxspowelline		2.50	1.53	3.04; J =10	4.90, 5.30; J=17

Nuclear Magnetic Resonance Data

The spectra were observed at 60 mc., using benzene as an external standard; to convert the data to p.p.m. relative to tetramethylsilane as 10.00 the value of 2.73 p.p.m. was assumed for benzene.⁴ The resonance of the sole aromatic proton of exspewelline (IV, $R = 0CH_3$)¹ is that anticipated for the C₁₀ proton, for the shift relative to the proton at C₁₀ of exercisine corresponds to the observed effect of the aromatic methoxyl (0.23 p.p.m.).⁴ The resonance peaks of the olefinic protons of exopewelline and exocrimine are essentially the same, although the former would surely be affected by a C₁₀ methoxyl. Further, the absorption of one of the benzylic protons of exopewelline at C₆ shows the effect of the C₇ methoxyl.

Chemical evidence showing conclusively that the methoxyl group is at the 7- position now has been obtained. (+)-Powellane (V)⁵ was converted with sodium in liquid ammonia to the phenol VI,⁶ m.p. 245-7°, ($\frac{24}{589}$ 8.6° (<u>c</u> 0.65, methanol) (Found: C, 73.93; H, 8.12; OCH₃, 11.85. C₁₆H₂₁NO₂ requires: C, 74.10; H, 8.16; OCH₃, 11.96). This was converted with diazomethane to the

⁴ L. N. Jackman Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry. Pergamon Press, New York, 1959, p. 63.

⁵ W. C. Wildman, <u>J. Am. Chem. Soc</u>. <u>80</u>, 2567 (1958).

⁶ <u>cf.</u> D. B. Clayson, <u>J. Chem. Soc</u>. 2016, 1949. We are grateful for discussions with Professor A. J. Birch of the University of Manchester concerning the applicability of the method to this problem.

VIII

oily ether VII, [a] 24 11.4° (c 0.69, chloroform) (Found: C, 74.25; H, 8.43; OCH₃, 22.95. C17H23NO2 requires: C, 74.69; H, 8.48; 2 OCH₃, 22.71); picrate, m.p. 238-9⁰ (Found: C, 55.09; H, 5.15; N, 11.24. C₂₃H₂₆O₉N₄ requires: C, 54.97; H, 5.22; N, 11.15). The ketone VIII (R = H), m.p. 62.5-63⁰ (Found: C, 7164; H, 8.01; OCH3, 26.82. C14H1803 requires: C, 71.77; H, 7.74; OCH3, 26.49) was converted to an oily keto ester VIII ($\mathbf{R} = CH_2CH_2COOCH_3$) with methyl acrylate (Found: C, 67.61; H, 7.71. C18H2405 requires: C, 67.48; H, 7.55). This was subjected to a Curtius degradation giving the imine IX, isolated as the picrate, m.p. 164-8° (Found: C, 54.04; H, 4.97; N, 11.46. C22H24N409 requires: C₁ 54.10; H, 4.95; N, 11.47). The base was reduced to the corresponding secondary amine which was cyclized with formaldehyde furnishing the oily racemate of VII whose infrared spectrum was identical (40 bands) with that of (+)-VII from natural sources (Found: C, 74.77; H, 8.58. C17H23NO2 requires: C, 74.69; H, 8.48). The racemic picrate, m.p. 209-212°, exhibited

108

an infrared spectrum (KBr) identical with that of (+)- VII. (Found: C, 54.66; H, 5.11; N, 11.06. C₂₃H₂₆O9N₄ requires: C, 54.97; H, 5.22; N, 11.15). Gas chromatographic behavior of the two materials was identical on a 3500 theoretical plate silicone (SE-30) column.

These results lead us to speculate that if the biogenesis proceeds through a precursor such as II, it may involve an alternate mode of coupling of the two rings (<u>of</u>. II $\longrightarrow X$, route B) followed by a dienone-phenol type rearrangement to either of the equivalent unsubstituted positions of ring A to yield XI, which possesses the correct arrangement of oxygen substituents. However, at present the possibility that <u>Ar</u>-methoxylation follows phenol coupling cannot be eliminated.